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Abstract—The power series of several variables has been applied to study the laminar mixed convection

about an isothermal rotating sphere in a stream of arbitrary direction with respect to the axis of rotation,

so that the velocity profile is three-dimensional. The boundary layer equations are numerically solved and

results are presented for values of the rotation parameter and the buoyancy parameter ranging from 0 to

10. For some particular cases, qualitative and quantitative comparisons with previous works reported in

the literature agree with each other. Moreover, the agreement between the theoretical results and the
experimental data is satisfactory.

1. INTRODUCTION

BecAUsE of their applications in many industrial pro-
cesses as in chemical or electrochemical engineering,
the heat and mass transfer to rotating bodies of revo-
lution in a stream has been the subject of several
inivestigations. Lee er al. [1] studied the laminar
boundary layer over a rotating sphere in forced flow
when the angle B, between the stream and the axis of
rotation is equal to zero. Furuta et al. [2] measured
the local and average mass transfer for the same prob-
lem and experimental results were in good agreement
with the theoretical ones. These authors also carried
out experiments for the cases §, = 45° and 90° (3], but
there is no theoretical work on this subject. On the
other hand, the combined forced and free convection
around a stationary sphere has been investigated by
Chen and Mucoglu [4], while free convection around
rotating bodies of revolution was considered by
Bachrun [5] and Suwono [6]. However, in these
two last works, no axial stream occurs.

More recently, the present authors [7] proposed a
theoretical analysis of the effects of buoyancy force
on a laminar boundary layer over a rotating sphere
which is situated in an axial stream. In this connection,
a later similar study of Rajasekaran and Palekar [8]
should be noted. In the present work, power series of
several dimensionless variables are used in order to
study the three-dimensional effects of the flow when
the angle B, is not equal to zero. The mathematical
model leads to the determination of the local and
average heat transfer rates and the components of the
local friction factor. Results are first given for gases

with a Prandtl number of 1. Finally, experimental
results which were obtained by an electrochemical
method are compared with the theoretical ones for a
Schmidt number of 2730.

2. THEORETICAL ANALYSIS

Consider a sphere of radius L which is situated in
a uniform flow with oncoming free stream velocity
U, and temperature T, as shown in Fig. 1. The
convective forced flow moves upward, while gravity
g, acts in the opposite direction. The axis of rotation
is inclined with an angle B, from the direction of the
stream. The surface temperature of the sphere T, is
constant and consideration is given to steady, laminar,
non-dissipative and incompressible boundary layer
flow. All physical properties of the fluid are assumed
constant, except the density changes which produce
buoyancy forces.

We choose coordinates x, y and 8 with x repre-
senting the distance measured along a meridian curve
from the forward stagnation point, y measuring the
normal distance from the surface of the sphere and 8
the azimuthal direction. @ is positive when the spin of
the sphere aids the forced flow and is negative in the
opposite case. Thus, the variations of 8 are included
in the range —n < 0 < =. Let ¥, V, and V, be the
components of velocity in the x-, y- and #-directions,
respectively. The conservation equations of the lami-
nar boundary layer can be written as [9]

oV, oV, 10V, V.dr_
x 'ty vt T

U
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B rotation parameter, equation (9)

C, & component of the local friction factor,
equation (29)

Cy 0 component of the local friction factor,
equation (29)

f(e,n,¢) reduced stream function,
equation (13)

g(e,n, ¢) reduced stream function,
equation (13)

9. gravitational acceleration [ms~?2]

Gr  Grashof number

h heat transfer coefficient, equation (30)
[Wm2K™]

L radius of the sphere [m]

NOMENCLATURE

4

) component of the velocity in the

y-direction [ms™']
V,  component of the velocity in the
0-direction [m s™']

x,y  coordinates shown in Fig. 1 [m].
Greek symbols

o thermal diffusivity [m?s~']

B, coefficient of thermal expansion [K ']

B angle between the direction of forced flow
and the axis of rotation (Fig. 1) [rad or
deg]

&1, ¢ system of dimensionless coordinates,

equation (12)

Nu  local Nusselt number, equation (29) A thermal conductivity of the fluid
Nu  average Nusselt number, equation (33) Wm'K™]
Pr  Prandtl number 0 radial coordinate shown in Fig. 1 [rad]
r radial distance from axis (Fig. 1) [m] 0r dimensionless temperature, equation (13)
Re,, Reynolds number, equation (11) u dynamic viscosity of the fluid [Nsm™2]
S area of the sphere [m?] v kinematic viscosity of the fluid [m?s~']
Sh  average Sherwood number p density of the fluid [kgm 3]
T fluid temperature [K] Ty component of the wall shear stress in the
T,  wall temperature [K] x-direction [Nm 2]
T, free stream temperature [K] Tg component of the wall shear stress in the
U local free velocity [ms™'] #-direction [Nm 2]
U, undisturbed oncoming free stream Y, ¢ stream functions which depend on x, y
velocity [ms™'] and 6 [m?s~']
V.  component of the velocity in the w spin velocity of the sphere [rads™!]
x-direction [ms™!] Q buoyancy force parameter, equation (10).
av, v, V,oVv, Vidr oV, In the foregoing equations, the standard symbols
V"E + Vy—a; T 0 v dx | 8yt are defined in the nomenclature. r(x) is the radial
duU x distance which is given by
+ U—+ (T—Ty)g.p.sin— (2)
dx L X
r= Lsin—. (6)
v, oV, V,0V, V.V,dr 08V, L
Vigo+tVyoet— =5 To=v=p ()
ox oy ~ r o0 rodx 0y The local free stream velocity U(x) is expressed
oT oT V,0T 8°T from the potential-flow solution
Ve +V, 7=+ — 5, =a5—. @
Ox dy r 06 dy 3 X
Equations (1)—(4) are subjected to the following U=3Ugsing. Q)

boundary conditions [10]:

V.= wLsin §,;sin 6 )
V,=0
V, = oL cos §,sin >
s = oL| cos f;sin L aty=0
. x

+sin §; cos 7 .Cos 9) &)
T=T, J
V.- U
Ve—0 asy — .
T->T,

It should be noted that the pressure distribution
around a stationary sphere in a free stream departs
from the potential-flow solution at an angle of
x/L =~ 30° for laminar flow [11]. Several authors [2,
12] have proposed solutions in which U/U,,, is assumed
to be expressed as an odd power series in x/L

v=v | aZem (2 s (XY
=Ue At 8\g) TOAL
/'x7
+D<L>+...j| ®)

where 4’, B’, C’, D’, ... are constants which are exper-
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F1G. 1. The coordinate system.

imentally determined. However, if only a few terms
of equation (8) are retained, the discrepancy between
these solutions may be large. Thus, in order to con-
serve the generality of the problem, equation (7) has
been chosen.

To facilitate a solution, it is convenient to introduce
two dimensionless parameters :

(a) the rotation parameter

B_4<La;2_ o
=g\v. )’ 9

(b) the buoyancy parameter

p— Gr .
T Rel’

(10

wherein the Grashof number Gr and the Reynolds
number Re,, are defined as
T,—T,)L?
G" — ga ﬂ t( w 5 oo)
(1)
UL

Re,, =
® v

We now define three flow dominated cases :

(1) the buoyancy force dominated case when Q > 1
and B < Q;

(2) the rotation dominated case when B > 1 and
B>Q;

(3) the forced flow dominated case for B < 1 and
Q<1

1513

Since our aim is to study the three-dimensional
effects of the flow, it is necessary to choose moderate
values of B and Q. Thus, in the following analysis we
only consider case (3); the other cases are similarly
treated [9] and the appropriate transformations to do
it are summarized in the Appendix.

Equations (1)}-(5) are transformed from coor-
dinates (x, y, 6) to (g, 7, ¢) dimensionless coordinates

(12)

U 1/2
()

We also introduce the reduced stream functions
f(n,¢) and g(e,1,¢) and a dimensionless tem-
perature 8,(e, 11, ©)

Y(x,7,0)
f(B 1, (P) = (LvsU)l/z

2 ,0 U 12
seney=PELO(UYT L
T [P £ 0 - Tao
Or(e,n, @) = (X—Ty_)T— )

where the stream functions  (x, y,8) and ¢(x,y,0)
satisfy the continuity equation (1) with

_1o@n
T
0 G,
)
0
Vg %.

Using equations (12) and (13) equations (14)
become

V,=Uf"; Vs=org
SdR of  f d
- 12 2 av
Vy = —(Lvel) [ & Tt de (15)
1 dg
+f TR 6(0]

the primes denoting differentiation with respect to #.
Equations (6) and (7) show that U= 3U_R with
R = r/L =sin (x/L). With the introduction of equa-
tions (15), equations (1)—(5) can be transformed into
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the following system of coupled equations:

. {1 3edRY .  edR 2 2 4 £sine
f +<2+2Rde)ff +3 (1 f 2 +Bg*y+ R 0
of’ ,,6 B{ 4 .
-]
1 3ed 2 dR 8y’ af Bf @ 15 (16
sr7 nt _i___ ’r __3__ (- fi rr 7T r_g__ n____g_
9 +(2+2Rd8)g Rde’ ¢ a[f ¢ 6s+ (géqa g&p)]
1 3¢dR 00 of B 00, dg
—l ’7 ’ /_ i Y : T4
r+ (2 2R de)fg [f % %R (g do 0T6<p ]
with ) )
differential equations is obtained.
f =g = 0, gr =1
. . (1) ForN=0:
f'.;Blﬂw atn=0 ) , 4
sinég (17) ”/+2f fo— 6 “l"Bg(; +§Qgro+l
g’ = cos f;+cotg esin f,cos @
, . afo fn%
-1 g-0, 6;-0 aty — oo. °6¢S L
In order to use the Gortler type of series [13], we 7 ago > {19)
assume that solutions of equations (13) are convergent  g¢” +2(g¢ fo~f080) = g’o g6
. 6 * dp
series of the form [14]
f(sa 1, (P) = S, (P)EN i a6 6
A%u v Proi0a+2fod7 = go 6:) 0705 — 6(p )
gem )= ) gnino)’ (18) It is clear that solutions must not depend on ¢ at
N: 0 the stagnation point. Thus, all derivatives with respect
Or(e, 1, 0) = E Orn(n, @)e". to ¢ vanish
N=0
II! # ’ 4
Upon substituting equations (18) into equations +2f¢ fo— S5’ +Bgi® + §QgT°+I =0
(16) and (17), collecting and equating to zero the e , 20)
coefficient of each power of ¢, the following set of +2(g5 fo—S040) =0
Prot070+2f o070 = 0.
The boundary conditions are
fo=foa=gs=0, =1, go=cosf aty=0 @
So—= 1, 80, go—0 ast -» 0.
@ ForN>0(N=1,2,3,..):
N—k
v B+ Z [Ak Z Fifneix—BE Y, (fif ik G GBI+ 5 QC& Orv_i ]
J=0
N—1 " N—k—1 ’afl_‘_ ”ag L
=X [(N—k)(f;f;v_k—fk Sy )+BEE ¥ (gf praak e S )]
k=0 j=0 @ @
'+ Z [Ak Z [ fn_jx—2B Z Jigni- k]
k=0
& NEY OGNk OGNy )
=X [(N—k)(f;g;,~k—g;’fﬁ_k)+BE: b (g Pl T v H @)
k=0 j=0 @ 14

Prtoy + Z AR Z SO0

i=0

N-1

, , e 00w , OGN i
= Z (N—K)fiBry-i—'m fn_i)}+ BE} z g; o0 — Uy F)

k=0 j=0
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with Series (24) are substituted into equations (20)-(23),
fn=gy="0mn=0 using the same procedure as in reducing equations
} atn =0 l (20)-(23) from equations (16) and (17).
fu=BF}, gy=G} (23)

fv—=0, gy—0, 8,0 asn - oo i () For N=M = 0:
where AF, B¥, C}, E¥, F} and G} are, respectively,

the coefficients of the power series of ¢ of the following S0 +2/5%0. 00
parameters :
; 4
1 3¢edRy e dR esing ¢ /o B+ 5Wro0+1 =0
2 2R de Rde R* R 25)
sin f;sing .
sing cotg & sin f; cos ¢. 960+2(9%.0 00— Fo0g00) =0
Now, in order to reduce equations (20) and (22)
into ordinary differential equations, the functions Pro' 0 0+2f 00000 =0
Ivn.9), gv(n, ©) and B.(n, ) are assumed to have
the following expansions :
* o with boundary conditions
fylne)= 3 fuumeo
M=0
= = 0: = ’ ) = 0’
v @)= 3 gyuime" ey Soo=So0= oo
M=0
& Oro0 = o = .
GTN(’?s Q) = Z Gm.M(f?)(PM- roo = L, goo = cosf; (26)
M=0
n—=00: foo=>1 goo—0, Orp—0.
(2) For N>0and M > 0:
N—k M N~k M
f:’,M+BN+ Z I:A* Z zfﬂfN Jk M- f"B* Z Z(f)!fN FkM—i
f=0t= j=0i=
£ s’ 4 *
= G N jerre—t" B+ §QCk Orw_rm
N1 M N—k—-1t M
= z {(N—k) Z (Sl verrt-3—=F 5 worna_1)+BE} Z Z (M—I+1)
k=0 =0 J=0 =0
X G S N jmtobt =141 “ff/’,.lgij-k,M—1+l)]
N~k M N—k M
I+ z [A* Zmz Giaf wejorssr+2BE Z Z St i e I:I
= J=0 f=
@n

N—k—1 M

Nt M
=3 [(N—}f) Y SraOnorstt—Giif nvoxm—)+BEF Y Y (M—I+1)
o Far J=0 =0

s £ ey
x (gj.19N~j-—k,M~a+ 1 —gj,igN~j»k,M-l)}

N—k M

Prot 0+ ZA* Z ijlHTN koMt

J=0 1=

N-1 N—k—~1 M

M
=y [(N—k) 120 SO rn—int—r=9%f weirsi)+BEE Z Z (M—I1+1)
= <o i=o

s Is
X (9‘,‘,167‘1%;-&,1;*“ I 8Tj,x'gN—»j‘-mk.M-l+ i )]

z
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Boundary conditions (23) become

Swar =G =O0ryp =0 }
, , atn =
S = Bl/zF}f/,Ma I = G¥u

f;V.M -0, .q;v,M -0, 0TN,M -0 asyp- o

|

where F}% ,,and G% ,, are the coeflicients of the power
series of F¥% and G} in terms of ¢. In the foregoing
equations, the functions subscribed (0,/) with /> 0
are equal to zero. The physical quantities of greatest
interest are the local Nusselt number Nu and the com-
ponents C, and C, of the local friction factor. These
quantities are defined, respectively, by

(28)

_hL T,

Ty
Nu=—; C, = ;
“ fapUL

U2

Co = 29

A’

where 7, and 7, are the components of wall shear
stress, p is the density and 4 is the thermal conductivity
of the fluid. With Fourier’s law, the heat transfer
coefficient A can be expressed as

oT
A==
<6y>y=0

h= T.,—T.,

(30)

The definitions of 7, and 1, are

v\ (v,
Tx_.u<ay>y=03 tg—u<ay>y=0 (31)

where u is the dynamic viscosity. From equations

G. Lt PALEC and M. DAGUENET

(29)-(31), it can be shown that

3 sins)”2 ® X

NuRez ' = — (5 — ) X X 050’
& —0/=0

i

1 3/2 oo oo )
5C. Rell* = @sina> &Y Y e’ (32)

j=01=0

1 B\'"? (3sing\? = =
EC" Rel? = (Z) < 5 ) Y Y g0y
j=0i=0

The average Nusselt number Nu can be obtained
from the following integral :

— 1
Nu = —J Nuds (33)
Sk

where S is the area of the sphere.

3. RESULTS AND DISCUSSION

Equations (25)—(28) are integrated using the fourth-
order Runge-Kutta—Gill procedure. The values of
S 5m(0), g'v1(0) and 077 4,(0) are determinated with
a multiple shooting method [15]. The first five terms
of series (18) have been calculated. For N = 1 and 2,
twelve terms of series (24) are necessary to get accurate
results. For N > 2, the higher order of ¢ may be
reduced as N increases in order to save computational
time. It should be noted that the series in terms of
¢ are numerically convergent for —n < ¢ < #. The
details of the numerical integration are reported in
ref. [9] and will not be repeated here.

©=0

/2 m

FiG. 2. Angular distributions of the local Nusselt number for Pr=1, B=05 Q=0: ———

Bi=15%

, B, = 30

B = 45"
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i i

0.75
15

iH

30 45

Fic. 3. Average Nusselt number vs 8. Pr=1,B=1,Q = (.

Numerical results were carried out for a Prandtl
number of 1 with rotation parameter and buoyancy
force parameter values ranging from 0 to 10.

In Fig. 2, distributions of the local Nusselt number
NuRez " at three angular locations (& = 15°, 45°,
75°) are plotted against ¢ for B = 0.5and Q = 0 (pure

forced convection) and for several values of f,. For
B:= 0°, we observe horizontal lines which indicate
that all the points of each angular location ¢ are sub-
jected to the same flow conditions. These lines are
progressively deformed into sinusoidal curves of
larger amplitude as f§; increases. Maximal and minimal

1
1/2 CeRel;

E= 45*

1.0
£x45°
0.7 L
b s 2o e RS T e o e —m — e e e —— - Pyl bl
i i
-1 -n/2 p=0 /2 v

F1G. 4. Angular distributions of the ¢ component of the local friction factor for Pr=1, B = 0.5.Q0=0:

B = 0 ———, B, = 15

B =45°.
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-1/2 C9R91;20

£=15°

-7t ~-T/2

P=z0

/2 w

F1G. 5. Angular distributions of the # component of the local friction factor for Pr=1, B=0.5,Q =0:

——— B = 0% ———, B = 15%;

values are obtained forr > ¢ >0and 0> ¢ > —m,
respectively, because the centrifugal forces support
the forced stream when ¢ is positive and oppose it
when ¢ is negative. It is interesting to note that the
mean value of the Nusselt number, at each &, is differ-
ent from that obtained for ;= 0°. As a result, the

B, = 45"

average Nusselt number Nu Rey'? slowly increases
with an increasing f, (Fig. 3), which is in agreement
with the experimental investigations of Furuta ef al.
[3].

Figures 4 and 5 show the three-dimensional effects
of the flow upon the angular distributions of the axial

!

-1 =T/2

Y=o

/2 m

FiG. 6. Angular distributions of the local Nusselt number for several values of the rotation parameter.

Pr=1,p=30°Q=0—— B=

0;

,B=05,——— B=1.
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Nu ReV?
0
8 =100
1.5
8=-10
\_/‘ 1
B4
B8=0
L i
-n -n2 ¥'=0 R n

FiG. 7. Angular distributions of the local Nusselt number
with respect to the axis of rotation. ¢’ = ;= 15°, Pr=1,
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and radial components of the local friction factor,
expressed as iC, Rel? and 1C, Rel?, respectively.
From Fig. 4, it is seen that opposing flow (¢ < 0)
produces a larger velocity gradient at the wall with an
accompanying increase in the friction factor.

Figure 6 shows the effect of the rotation parameter.
The local distributions of the Nusselt number are
plotted against ¢ for Q = 0, §; = 30° and three values
of B (0, 0.5, 1). It is noted that the amplitude of
sinusoidal profiles is larger as B increases. Moreover,
the local heat transfer rate has a higher value for a
higher rotation parameter, which is due to centrifugal
effects. It is of interest to compare our results with the
experimental ones measured by Furuta et al. Unfor-
tunately, the data reported in ref. [3] do not permit a
quantitative comparison and so we only study the
qualitative effect of B, Figure 7 shows the local Nusselt
number profile for ¢ = §; = 15°, where ¢ is defined in
the inset. For B =0 and with respect to the axis of
rotation, we get a symmetrical curve with its
maximum value at ¢’ = 0. This curve is deformed into
a sinusoidal shape as B increases, minimum values of
the profile occurring in the region ¢’ < 0. When the
spin velocity  is high as compared to U,, the effect
of the oncoming forced stream becomes negligible so
that a horizontal straight line is obtained. This change
in the shape of the profile as B increases is in quali-
tative agreement with the result of Furuta et al.

The free convective effects on the local heat transfer
rate are shown on Fig. 8 where NuGr~"* is plotted
against ¢ for Q =0.5, 1 and 10, ;= 30° and three

Q=0. angular locations . As Q increases, the deformation
Nu G/
—_— — e e T T T T TR T T T
\c =15°
—— —

L - -

~ + - ~
e~ e — — "0}
Z —]
/
€x45°

e __EZ1Y°
———ee— . 08 e — e ]

s €=45"

—- PR 23 i
— — e e e e e e — e -—|
-1 -m/2 Y =0 w2 n

FiG. 8. Angular distributions of the local Nusselt number in terms of NuGr~"* for several values of the

buoyancy force parameter: Pr=1,,=30°, B=0: ———, Q =0.5;

Q=1;—— Q=10.
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of the profiles is similar to that of the preceding figure.
The curves pass from a sinusoidal shape when Q is
low to a horizontal line for Q = 10, which shows that
the heat transfer rate becomes symmetrical with
respect to the direction of the forced stream. It is
evident that this limiting value of 10 will be higher for
a higher value of the rotation parameter.

It should also be noted that our results agree with
the theoretical study of Lee ez al. [1] for the particular
case of axial pure forced convection (f;, = Q = 0).
These results are compared in Fig. 9 for B = 1 and 10.

Before concluding this section, it is of interest to
compare the theoretical results with experimental data
in order to provide some quantitative comparisons.
The average mass transfer coefficient for a rotating
sphere in a stream was measured by an electro-
chemical method. The details of this method have
been reported elsewhere [9, 16, 17]. Figure 10 shows
the effect of the rotation parameter on the average
Sherwood number, Sh, for Q = 10 and for several
values of f; (0°, 5°, 10°, 15°). The Schmidt number

G. LE PaLECc and M. DAGUENET

was equal to 2730 and numerical calculations were
performed for this value. As it can be seen, the agree-
ment between the theoretical results and experimental
data is satisfactory. However, it may be observed that
the theory leads to a larger Sherwood number than
the experimental one, specially when B is low. One of
the reasons is that the hypothesis of the potential-flow
solution provides higher local mass (heat) transfer
rates for 60° < ¢ < 90° [2, 4]: as a result, the average
Sherwood (Nusselt) number is greater. The slight dis-
crepancy between the theory and data also results
from separation which is predicted to occur for lami-
nar flow over a stationary sphere at ¢ >~ 110°. For a
rotating sphere in an axial stream, this angle is reduced
and it becomes equal to 90° when wL >» U, . However,
in this last case, equation (33) gives better results
because the flow is symmetrical with respect to the
equatorial zone [5, 9]. The theoretical increase of Sh
with increasing f; shown in Fig. 10 is too small to
be validated by the experimental data, which have
estimated errors of +8%.

1. E(*)

30

60 90

F1G. 9. Comparison of our results with theoretical work of Lee et al. [1]. Pr=1,8,=0°,Q=0: ——,
our results; O, results of ref. [1].



Laminar three-dimensional mixed convection about a rotating sphere in a stream

1521

5 B l Exp. |Theory|
0° v
5° L
10° °
L 15° . —_—
100 o . A
[ ave 4 9 o a * °
10 i 1 RN | 1 1 N | 8

1

10

F1G. 10. Effect of the rotation parameter upon the average Sherwood number : comparison between the
theory and data [9, 17]. Q = 10, Schmidt number = 2730.

4. CONCLUSION

The Gortler type of series has been applied to the
study of the three-dimensional mixed convection
about a rotating sphere which is situated in a forced
stream of arbitrary direction with respect to the axis
of rotation. Results show the three-dimensional effects
of the flow on the local heat transfer rate and the
components of the friction factor. The values of the
rotation parameter and the buoyancy force parameter
range from 0 to 10. For a Prandtl number of 1, our
results qualitatively and quantitatively agree with
some particular cases reported in the literature. More-
over, experimental investigations by an electro-
chemical method provide a reasonable agreement
between theoretical results and measurements.

REFERENCES

[. M. H. Lee, D. R. Jeng and K. J. De Witt, Laminar
boundary layer transfer over rotating bodies in forced
flow, ASME J. Heat Transfer 100, 496-502 (1978).

2. T. Furuta, T. Jimbo, M. Okazaki and R. Toei, Mass
transfer to a rotating sphere in an axial stream, J. Chem.
Engng Japan 8, 456-462 (1975).

3. T. Furuta, M. Okazaki and R. Toei, Mass transfer to a
rotating sphere in a stream, J. Chem. Engng Japan 10,
286-292 (1977).

4. T. S. Chen and A. Mucoglu, Analysis of mixed forced
and free convection about a sphere, Int. J. Heat Mass
Transfer 20, 867-875 (1977).

5. R. K. Bachrun, Etude des couches limites newtoniennes
et ostwaldiennes engendrées par la rotation de corps a

. H. Schlichting,

symeétrie de révolution. Application au contrdle hydro-
dynamique des couches limite de diffusion, Thesis, Per-
pignan, France (1981).

. A. Suwono, Buoyancy effects on flow and heat transfer

on rotating axisymmetric round-nosed bodies, Int. J.
Heat Mass Transfer 23, 819-831 (1980).

. G. Le Palec and M. Daguenet, Analysis of free con-

vective effects about a rotating sphere in forced flow, Int.
Commun. Heat Mass Transfer 11, 409-416 (1984).

. R. Rajasekaran and M. G. Palekar, Mixed convection

about a rotating sphere, Int. J. Heat Mass Transfer 28,
959-968 (1985).

. G. Le Palec, Etude de la convection mixte tri-

dimensionnelle autour d’une sphére en rotation dans
un écoulement ascendant de fluide newtonien, Thesis,
Perpignan, France (1986).

. F. Ayres, Theory and Problems of Plane and Spherical

Trigonometry. McGraw-Hill, New York (1954).
Boundary-layer Theory, 6th Edn.
McGraw-Hill, New York (1968).

. N. Frossling, Evaporation, heat transfer and velocity

distribution in two-dimensional and rotationally sym-
metrical laminar boundary-layer flow, National Advis-
ory Committee for Aeronautics, TM 1432 (1958).

. H. Gortler, A new series for the boundary-layer, J. Math.

Mech. 16, 1-66 (1957).

. A. Suwono, Laminar free convection boundary-layer in

three-dimensional systems, Int. J. Heat Mass Transfer
23, 53-61 (1981).

. B. Carnahan, H. A. Luther and J. O. Wilkes, Applied

Numerical Methods. Wiley, New York (1969).

. T. Mizushina, Advances in Heat Transfer, Vol. 7, p. 87.

Academic Press, New York (1971).

. M. T. Razafiarimanana, G. Le Palec, F. Coeuret et M.

Daguenet, Transfert de matiére en convection mixte
entre une sphére en rotation et un liquide newtonien en
écoulement vertical ascendant, Electrochim. Acta (1987),
in press.



1522

G. LE PALEC and M. DAGUENET

APPENDIX g +K 9" f+Keg [’
This section gives the appropriate transformations in order 0y ,0f 1( dg
to study the rotation dominated case (B > 1, B > Q) and the =¢| % 9 %R 0

buoyancy force dominated case (Q > 1, B < Q).
Table Al summarizes the definitions of the dimensionless  Pr=' 07+ K05/
coordinates ¢, n and ¢ with the corresponding dimensionless

stream functions f(e, 7, ¢) and g(e, n, ¢). For both cases, the =¢ [ f'% ~ 6 of + l( '%
dimensionless temperature 8;{e, n, ¢) is defined by equation de

(13).

Introducing these transformations in equations (1)-(5)
gives the following differential system :

S+ K K g K ff 7+ K+ K0y

[
Oe

=g|:f’

T2 R\ 3¢ ~

with

, 09

. 0g
73]

)

Ta(p

Table Al. Definition of ¢, n, ¢, f(e,1, @) and g(¢, n, ¢) for the study of the rotation dominated case and

the buoyancy force dominated case

& n ¢ Sflen, 0) 9(en. 9)
1/2
Rotation dominated case z (f’_R) y 6 wR\Y(x,y,6) wR\¢(x,y,6)
L ve ve wr VE wr
: x " ¥ (x..6) $(x,7,6)
Buoyancy force dominated case 2 Gr I 0 "Gt BT

Table A2. Definition of the coefficients of equations (34)

Rotation dominated case Buoyancy force dominated case

K,

K;

K,

K,

K;

Ks

K,

Ky

Ky

_tdR -1
R de
¢ dR id_R
R de R de
l + 3 ﬁ d_R 1 + .E 95
2 2R de R de
%U% (@L)~ %U—Z %Un-'
sine Gr wl? sing
R R Ty e
2edR ¢ dR
"R - <‘ +iaz>
sin §,sin @ 3 (B\"? . .
“sine E(ﬁ) sin §;sin @
. . 3 B 1/2
cos f;+cotg ¢ sin f;sin ¢ Z(ﬁ) (cos B, sin £+ sin B;cos @ cos &)
B-v? 39—:/2&

2 €

g —=0;0,-0; f">K; asp—>©
P 1 af 2 where the coefficients K, K,, ... are given in Table A2.
#9f + _<g, f — f,,_g>] Equations (34) are treated as explained in Section 2 by
d  R\” oo d¢ introducing successively series (18) and (24).



Laminar three-dimensional mixed convection about a rotating sphere in a stream

CONVECTION MIXTE TRIDIMENSIONNELLE AUTOUR D’UNE SPHERE
EN ROTATION DANS UN ECOULEMENT FORCE

Résumé—On utilise des séries en puissance de plusieurs variables adimensionnelles pour étudier la con-

vection mixte tridimensionnelle autour d’une sphére en rotation placée dans un écoulement forcé dont la

direction différe de celle de I’axe de rotation. Les équations de la couche limite sont intégrées numériquement

et les résuitats présentés ont été obtenus pour des valeurs modérées du paramétre de rotation et du

paramétre de convection naturelle, ces derniers variant entre 0 et 10. Les résultats relatifs & quelques cas

particuliers étudiés dans la littérature montrent un bon accord qualitatif. Par ailleurs, la comparaison entre
les résultats théoriques et expérimentaux s’avére satisfaisante.

LAMINARE DREIDIMENSIONALE MISCH-KONVEKTION UM EINE ANGESTROMTE
ROTIERENDE KUGEL

Zusammenfassung—Zum Studium der laminaren Misch-Konvektion um eine willkiirlich angestromte,

isotherme, rotierende Kugel wurde eine Potenzreihenentwicklung fiir verschiedene Variablen aufgestellt,

wobei ein 3-dimensionales Geschwindigkeitsfeld vorliegt. Die Grenzschichtgleichungen wurden numerisch

geldst, die Ergebnisse werden fiir Rotationsparameter und Auftriebsparameter im Bereich von 0 bis 10

dargestellt. Fiir einige Spezialfille ergibt sich eine qualitative und quantitative Ubereinstimmung mit

Literaturangaben. Dariiberhinaus ist die Ubereinstimmung zwischen den theoretischen und experimen-
tellen Ergebnissen befriedigend.

JTAMUHAPHAS TPEXMEPHASI CMEHIAHHASA KOHBEKIIUSI OKOJIO BPAWAIOUMEACS
C®EPBI

Annoramms—Hcnonbp3yloTcs cTeneHHbie PAAbl HECKOJbKHX MEPEMEHHBIX UIS HCCIECAOBAHHS JIAMHHAD-
HOH CMeEIaHHOH KOHBEKIHH OKOJIO H30TEpMHYECKOH Bpawaroweiica coepbl, ob6Texaemoll noroxom
ANPOU3BOJILHOTO MO OTHOLUCHHIO K OCH BPALUCHUS HANPaBJICHHA, YTO 06YC/IaBIHBaeT TPEXMEPHOE pac-
npefeieHne CKOPOCTH. YpaBHEHHS MOTPaHHYHOrO CJOA PeIIaloTCH YMChaeHHO. TIpeacTaBiieHB pe3yis-
TaThl PacyeTOB [UIA 3HAYCHHH MapaMeTpa, XapaKTEePH3YIOLIErO BpallleHHE, a TaKke NapaMeTpa,
XapaKTEPH3YIOLIETO MOJbEMHRIE CHJILL B qHana3oHe oT 0 1o 10. J1ns HEKOTOPBIX YaCTHHIX CIIyYaeB Npo-
BEJICHO KaYECTBEHHOE H KOJIHYECTBEHHOE CPaBHEHHE C pe3YJIbTaTaMH NpeabIAyIHX paboT H Noxa3aHo ux
xopouee cooTBeTcTBHe. KpoMe TOro, mojiyqeHO yIOBJIETBOPHTENIbHOE COBMAJCHHE TEOPETHYECKHX H
IKCTIEPHMEHTAIBHBIX PE3y/IbTATOB.
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