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Abstract-The power series of several variables has been applied to study the laminar mixed convection 
about an isothermal rotating sphere in a stream of arbitrary direction with respect to the axis of rotation, 
so that the vetocity progle is ~r~mensional. The boundary layer equations are numerically solved and 
results are presented for values of the rotation parameter and the buoyancy parameter ranging from 0 to 
10. For some particular cases, qualitative and quantitative comparisons with previous works reported in 
the literature agree with each other. Moreover, the agreement between the theoretical results and the 

experimental data is satisfactory. 

1. INTRODUCTION 

BECAUSE of their applications in many industrial pro- 
cesses as in chemical or electrochemical engineering, 
the heat and mass transfer to rotating bodies of revo- 
lution in a stream has been the subject of several 
investiga~ons, Lee et at. [l] studied the laminar 
boundary layer over a rotating sphere in forced fiow 
when the angle @, between the stream and the axis of 
rotation is equal to zero. Furuta et al. [2] measured 
the local and average mass transfer for the same prob- 
lem and experimental results were in good agreement 
with the theoretical ones. These authors also carried 
out experiments for the cases & = 45” and 90” (31, but 
there is no theoretical work on this subject. On the 
other hand, the combined forced and free convection 
around a stationary sphere has been investigated by 
Chen and Mucoglu 141, while free convection around 
rotating bodies of revolution was considered by 
Bachrun [5] and Suwono [6]. However, in these 
two last works, no axial stream occurs. 

More recently, the present authors [7] proposed a 
theoretical analysis of the effects of buoyancy force 
on a laminar boundary layer over a rotating sphere 
which is situated in an axial stream. In this connection, 
a later similar study of Rajasekaran and Palekar [8] 
should be noted. In the present work, power series of 
several dimensionless variables are used in order to 
study the three-dimensional effects of the flow when 
the angle /?* is not equal to zero. The mathematical 
model leads to the determination of the local and 
average heat transfer rates and the components of the 
locat friction factor. Results are first given for gases 

with a Prandtl number of 1. Finally, experimental 
results which were obtained by an electrochemical 
method are compared with the theoretical ones for a 
Schmidt number of 2730. 

2. THEORETICAL ANALYSIS 

Consider a sphere of radius L which is situated in 
a uniform flow with oncoming free stream velocity 
LJ, and temperature T,, as shown in Fig. 1. The 
convective forced flow moves upward, while gravity 
ga acts in the opposite direction. The axis of rotation 
is inclined with an angle /I, from the direction of the 
stream. The surface temperature of the sphere r, is 
constant and consideration is given to steady, laminar, 
non-dissipative and incompressible boundary layer 
flow. All physical properties of the fluid are assumed 
constant, except the density changes which produce 
buoyancy forces. 

We choose coordinates x, y and 8 with x repre- 
senting the distance measured along a meridian curve 
from the forward stagnation point, y measuring the 
normal distance from the surface of the sphere and @ 
the azimuthal direction. B is positive when the spin of 
the sphere aids the forced flow and is negative in the 
opposite case. Thus, the variations of 0 are included 
in the range -n < 0 < x. Let V,, V,, and V, be the 
components of velocity in the x-, y- and &directions, 
respectively. The conservation equations of the lami- 
nar boundary layer can be written as [9] 

av, av, 1 av, ~+-;.+;-+~~=o 
dY 

(1) 

1511 
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NOMENCLATURE 

B rotation parameter, equation (9) 

c, E component of the local friction factor, 
equation (29) 

CC+ f3 component of the local friction factor, 
equation (29) 

f(s, q, 4) reduced stream function, 

equation (13) 
g(s, q, Cp) reduced stream function, 

equation (13) 

ga gravitational acceleration [m s-*1 
Gr Grashof number 
h heat transfer coefficient, equation (30) 

v, component of the velocity in the 
Y-direction [m ss’] 

VS component of the velocity in the 
e-direction [m s- ‘1 

X,Y coordinates shown in Fig. 1 [ml. 

Greek symbols 
thermal diffusivity [m’ SC’] 

;, coefficient of thermal expansion [Km’] 

A angle between the direction of forced flow 
and the axis of rotation (Fig. 1) [rad or 

deal 
[Wm-*K-l] E, 1, C#J system of dimensionless coordinates, 

L radius of the sphere [m] equation (12) 
Nu local Nusselt number, equation (29) a thermal conductivity of the fluid 
NU average Nusselt number, equation (33) [WrnpiKmi] 
Pr Prandtl number 6 radial coordinate shown in Fig. 1 [rad] 
r radial distance from axis (Fig. 1) [m] 07. dimensionless temperature, equation (13) 

Re, Reynolds number, equation (11) p dynamic viscosity of the fluid [N s m-‘1 
S area of the sphere [m*] V kinematic viscosity of the fluid [m’ SC’] 
Sh average Sherwood number P density of the fluid [kg m-‘1 
T fluid temperature [K] 7.X component of the wall shear stress in the 

T, wall temperature [K] x-direction [N m-‘1 

TCC free stream temperature [K] re component of the wall shear stress in the 

u local free velocity [m s-‘1 e-direction [N mm’] 

U, undisturbed oncoming free stream $, C$ stream functions which depend on x, y 

velocity [m s- ‘1 and 0 [m2s-1] 

VX component of the velocity in the spin velocity of the sphere [rad SV’] 
x-direction [m SC’] z buoyancy force parameter, equation (10). 

In the foregoing equations, the standard symbols 
are defined in the nomenclature. r(x) is the radial 

dU 
+ Uz + (T- T,)g,B, sin: 

distance which is given by 

(2) 

r = LsinX 
L’ (6) 

(3) 
The local free stream velocity U(x) is expressed 

(4) 
from the potential-flow solution 

Equations (l)-(4) are subjected to the following (7) 

boundary conditions [lo] : 

V, = WL sin /Ii sin 0 

v, = 0 

V. = WL 
( 

cos/I,sin: 

+ sin pi cos :cos 0 
> 

T= T, 

v, + u 

v, -+ 0 

T+ T, 
asy+cO. 

aty=O 

It should be noted that the pressure distribution 
around a stationary sphere in a free stream departs 
from the potential-flow solution at an angle of 
x/L N 30” for laminar flow [ 111. Several authors [2, 
121 have proposed solutions in which U/U, is assumed 
to be expressed as an odd power series in x/L 

(5) 
U=Um[At;+B($+C’(;) 

I +D(g + . ..I (8) 

where A’, B’, C’, D’, . . are constants which are exper- 
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“,,-L 
FIG. 1. The coordinate system. 

imentally determined. However, if only a few terms 
of equation (8) are retained, the discrepancy between 
these solutions may be large. Thus, in order to con- 
serve the generality of the problem, equation (7) has 
been chosen. 

To facilitate a solution, it is convenient to introduce 
two dimensionless parameters : 

(a) the rotation parameter 

4 Lw 2 

B=G u, ; ( > 

(b) the buoyancy parameter 

*=-G’. 
Re: ’ 

wherein the Grashof number Gr 
number Re, are defined as 

(9) 

and the Reynolds 

Gr = s,B,(~w-Tco)L3 
V2 

UCOL 
Re, = ~ 

v . 

(11) 

We now define three flow dominated cases : 

(1) the buoyancy force dominated case when CI > 1 
andB<fi; 

(2) the rotation dominated case when B > 1 and 
B>fl; 

(3) the forced flow dominated case for B < 1 and 
R< 1. 

Since our aim is to study the three-dimensional 
effects of the flow, it is necessary to choose moderate 
values of B and R. Thus, in the following analysis we 
only consider case (3) ; the other cases are similarly 
treated [9] and the appropriate transformations to do 
it are summarized in the Appendix. 

Equations (l)-(S) are transformed from coor- 
dinates (x, y, 0) to (E, q, cp) dimensionless coordinates 

We also introduce the reduced stream functions 
f(s,~ cp) and g(a, q, cp) and a dimensionless tem- 
perature &(E, r7, cp) 

*(xYY?e) 
f(G % cp) = (LveU)l/2 

g(E rl cp) = 4kY,@) u “2 
3 > 

-Lve wr o> 
(13) 

&(s, % cp) = 
T(x, y, 0) - T, 

T,--T, / 

where the stream functions $ (x, y, 0) and C#J (x, y, 0) 
satisfy the continuity equation (1) with 

* 
r 0 

v=!!9 
* ay’ 

Using equations (12) and (13) equations (14) 
become 

V, = Uf’ ; V. = wrg’ ‘I 

v, = -(Lv&u)“2 
f dR af f dU 

KT&+TG+,,dE (15) 

+f&+EY 
a& R acp 1 

the primes denoting differentiation with respect to q. 
Equations (6) and (7) show that U = $U,R with 
R = r/L = sin (x/L). With the introduction of equa- 
tions (15), equations (l)-(5) can be transformed into 
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the following system of coupled equations : 

)I 
t 

(16) 

with 

f=g=O, o-,=1 

f’ = B’/2 sin /Ii sin $J 

sin E (17) 
g’ = cos & +cotg E sin ~9~ cos tp 

f’-+I, g’+O, @r-+0 

differentia1 equations is obtained. 

(1) ForN=O: 

4 
fC’+2f:f,-f;*+Bg;* +gReTo+l 

In order to use the Giirtler type of series [13], we 
assume that solutions of equations (13) are convergent 
series of the form [ 141 

(18) It is clear that solutions must not depend on cp at 
the stagnation point. Thus, all derivatives with respect 
to q vanish 

Upon substituting equations (18) into equations f~+2f~fo-f~2~~g~* +fne,+l =o 
(16) and (17), collecting and equating to zero the 
coefficient of each power of E, the following set of glY+2(g;‘fo-f 6gb) = 0 

I 

(20) 

Pr-’ e~;0+2foe;, = 0. 

The boundary conditions are 

fo=f6=g0=0, e,@=l, g$=cos& atq=O 

f6-1, @,0-+0, A-0 asn-+co. 1 
(21) 

(2) ForN>O(N= 1,2,3,...): 

AfN~kfjf$,_,-B:N~k*(f;fN-j-k-g~g;_,_k*B)+ $c&?eTN-k 
j-0 1 

N-k--i 

tN-k)(f;f’,-,-f;‘f,-k)+BE,* 1 g; df;;-k fi” &h&bk 
j-0 )I 

gG’+ kio A,* Nikg;’ fN_j-k_2Bt Nik fi&j_k 
a j=O J=o 1 

Pr- 'iI'& + 5 A$Nikfjf&N-j-k 

k=O j=O 

(22) 
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with Series (24) are substituted into equations (20 j(23), 

J’N = @N = i&V = 0 

f:y = B’j’F;, I 
at?=0 

i&, = G,:: I 

using the same procedure as in reducing equations 

i 

(231 
(20)-(23) from equations (16) and (17). 

f‘&-+O, g;+o, B,+O asq-+co (I) For N = A4 = 0: 

where A$, B,*, C,*, Et> F$ and Gg are, respectively, 
the coefficients of the power series of 6 of the following f’d,X + 2f&Jfo,* 
parameters : 

-f&+Bg$‘o+ ;QOT5,0+ 1 = 0 

sin /3: sin q 

sins ’ 
cotg E sin /I$ cos 9, s;;6+2~~,ofo,o-fb.o9b*o) = 0 

Now, in order to reduce equations (20) and (22) 
into ordinary differential equations, the functions 

to have 

with boundary conditions 

(24) vl=o: f 0.5 = f6,o = 90.0 = 0, 

(27) 
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Boundary conditions (23) become 

SN,M = SN,M = ~V?,M = 0 

f ;,,, = B “‘F&, g;,+, = G;,,, cw 

fX,M + 0, &‘?4 -4 0TN.M + 0 asr]-tcc J 

where FzlM and Gf,+, are the coefficients of the power 
series of F$ and G,$ in terms of cp. In the foregoing 
equations, the functions subscribed (0, I) with I > 0 
are equal to zero. The physical quantities of greatest 
interest are the local Nusselt number Nu and the com- 
ponents C, and C, of the local friction factor. These 
quantities are defined, respectively, by 

where Z, and z0 are the components of wall shear 
stress, p is the density and 1 is the thermal conductivity 
of the fluid. With Fourier’s law, the heat transfer 
coefficient h can be expressed as 

h= 
-- vYj,=, 
T,-T, ’ 

The definitions of z, and Q are 

(30) 

where p is the dynamic viscosity. From equations 

(29k(31), it can be shown that 

(32) 

The average Nusselt number NU can be obtained 
from the following integral : 

NudS (33) 

where S is the area of the sphere. 

3. RESULTS AND DISCUSSION 

Equations (25)-(28) are integrated using the fourth- 
order Runge-Kutta-Gill procedure. The values of 
f’&(O), g’h,M(0) and Q’&,(O) are determinated with 
a multiple shooting method [15]. The first five terms 
of series (18) have been calculated. For N = 1 and 2, 
twelve terms of series (24) are necessary to get accurate 
results. For N > 2, the higher order of cp may be 
reduced as N increases in order to save computational 
time. It should be noted that the series in terms of 
cp are numerically convergent for -n < cp < 7~. The 
details of the numerical integration are reported in 
ref. [9] and will not be repeated here. 

-TI -n/2 cp=0 n/2 lT 

FIG. 2. Angular distributions of the local Nusselt number for Pr = 1, B = 0.5, f2 = 0: ---, 
p, = 15”; p, pr = 30”; -p-, pz = 45”. 
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0.76 

0.77 

0.76 

0.75 
i # t 

15 30 4s 

FIG. 3. Average Nusselt number vs /$. Pr = I, B = 1, G! = 0. 

Numerical results were carried out for a Prandtl forced convection) and for several values of pi. For 
number of 1 with rotation parameter and buoyancy pi = O”, we observe horizontal lines which indicate 
force parameter values ranging from 0 to 10. that all the points of each angular location E are sub- 

In Fig. 2, distributions of the local Nusselt number jected to the same flow conditions. These Iines are 
NU Re; ‘P at three angular locations (E = 1 So, 45”, progressively deformed into sinusoidal curves of 
75”) are plotted against 40 for B = 0.5 and Q = 0 (pure larger amplitude as fii increases. Maximal and minimal 

Pi 

1517 

'1.6 

EZ is* 
0.7 
,_-_-_-_-__- $!- _-_- 
----__--- ----c 

-lI -w2 Ip=o TV2 n 

FIG. 4. Angular distributions of the E component of the local friction factor for Pr = 1, B = OS, fi = 0: 
---,pi=O*;---,&= 15"; -, p,= 45". 
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t 
-1/2 CeRe”L 

E 
. 

-I 
-R -n/2 rp,o n/z n 

FIG. 5. Angular distributions of the 0 component of the local friction factor for Pr = 1, B = 0.5, Q = 0 : 
__-,$= o”;----,p, = 15”; -, BE = 45”. 

values are obtained for n > rp > 0 and 0 > p > -7c, average Nusselt number P& Re; ‘I’ slowly increases 
respectively, because the centrifugal forces support with an increasing & (Fig. 3), which is in agreement 
the forced stream when q is positive and oppose it with the experimental investigations of Furuta et al. 
when v, is negative. It is interesting to note that the [31. 
mean value of the Nusselt number, at each E, is differ- Figures 4 and 5 show the three-dimensional effects 
ent from that obtained for fit = 0”. As a result, the of the flow upon the angular distributions of the axial 

0.6 

-IT -w2 lpI0 E/2 11 

FIG. 6. Angular distributions of the local Nusselt number for several values of the rotation parameter. 
Pr= 1,8,=30”,Q=O:---,B=O; -,B=OS---,B= 1. 
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-n -n4 Q’:O 

NV IG’” 
0 

nh n 

FIG. 7. Angular distributions of the local Nusselt number 
with respect to the axis of rotation. E’ = B, = W, Pr = 1, 

R = 0. 

and radial components of the local friction factor, 
expressed as :C, Rez2 and ;C, Rez’, respectively. 
From Fig. 4, it is seen that opposing flow (cp < 0) 
produces a larger velocity gradient at the wall with an 
accompanying increase in the friction factor. 

Figure 6 shows the effect of the rotation parameter. 
The local distributions of the Nusselt number are 
plotted against cp for $2 = 0, /Ii = 30” and three values 
of B (0, 0.5, 1). It is noted that the amplitude of 
sinusoidal profiles is larger as B increases. Moreover, 
the local heat transfer rate has a higher value for a 
higher rotation parameter, which is due to centrifugal 
effects. It is of interest to compare our results with the 
experimental ones measured by Furuta et al. Unfor- 
tunately, the data reported in ref. [3] do not permit a 
quantitative comparison and so we only study the 
qualitative effect of B. Figure 7 shows the local Nusselt 
number profile for E’ = /I, = 1 Y, where E’ is defined in 
the inset. For B = 0 and with respect to the axis of 
rotation, we get a symmetrical curve with its 
maximum value at cp’ = 0. This curve is deformed into 
a sinusoidal shape as B increases, minimum values of 
the profile occurring in the region cp’ < 0. When the 
spin velocity w is high as compared to U,, the effect 
of the oncoming forced stream becomes negligible so 
that a horizontal straight line is obtained. This change 
in the shape of the profile as B increases is in quali- 
tative agreement with the result of Furuta et al. 

The free convective effects on the local heat transfer 
rate are shown on Fig. 8 where Nu Gr- ‘I4 is plotted 
against rp for R = 0.5, 1 and 10, jIi = 30” and three 
angular locations E. As R increases, the deformation 

, Nu Gr-“’ 

--- --__---- 
___--------__ z c=15* 

--------_ ___---____ EZ7S. _____-_--a---v--e_ 
I 

-n -n/2 lpro n/2 IT 

FIG. 8. Angular distributions of the local Nusselt number in terms of Nu Gr- Ii4 for several values of the 
buoyancy force parameter: Pr = 1, /Ii = 30”, B = 0: ---, R = 0.5; -,n= I;---,R= 10. 
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of the profiles is similar to that of the preceding figure. 
The curves pass from a sinusoidal shape when R is 
low to a horizontal line for R = 10, which shows that 
the heat transfer rate becomes symmetrical with 
respect to the direction of the forced stream. It is 
evident that this limiting value of 10 will be higher for 
a higher value of the rotation parameter. 

It should also be noted that our results agree with 
the theoretical study of Lee et al. [l] for the particular 
case of axial pure forced convection (/Ii = Q = 0). 
These results are compared in Fig. 9 for B = 1 and 10. 

Before concluding this section, it is of interest to 

compare the theoretical results with experimental data 
in order to provide some quantitative comparisons. 
The average mass transfer coefficient for a rotating 
sphere in a stream was measured by an electro- 
chemical method. The details of this method have 
been reported elsewhere [9, 16, 171. Figure 10 shows 
the effect of the rotation parameter on the average 
Sherwood number, Sh, for R = 10 and for several 
values of /Ii (0”, 5”, lo”, 15O). The Schmidt number 

0.6 

was equal to 2730 and numerical calculations were 
performed for this value. As it can be seen, the agree- 
ment between the theoretical results and experimental 
data is satisfactory. However, it may be observed that 
the theory leads to a larger Sherwood number than 
the experimental one, specially when B is low. One of 
the reasons is that the hypothesis of the potential-flow 
solution provides higher local mass (heat) transfer 
rates for 60” < E < 90” [2, 41: as a result, the average 
Sherwood (Nusselt) number is greater. The slight dis- 
crepancy between the theory and data also results 
from separation which is predicted to occur for lami- 
nar flow over a stationary sphere at E N 1 IO’. For a 
rotating sphere in an axial stream, this angle is reduced 
and it becomes equal to 90” when wL >> U, . However, 
in this last case, equation (33) gives better results 
because the flow is symmetrical with respect to the 
equatorial zone [5, 91. The theoretical increase of Sh 
with increasing b, shown in Fig. 10 is too small to 
be validated by the experimental data, which have 
estimated errors of f 8%. 

30 60 90 

FIG. 9. Comparison of our results with theoretical work of Lee ef al. [l]. Pr = 1, p, = O’, $2 = 0: -, 
our results; 0, results of ref. [I]. 
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FIG. IO. Effect of the rotation parameter upon the average Sherwood number : comparison between the 
theory and data [9, 171. R = 10, Schmidt number = 2730. 

4. CONCLUSION 

The Gortler type of series has been applied to the 
study of the three-dimensional mixed convection 
about a rotating sphere which is situated in a forced 
stream of arbitrary direction with respect to the axis 
of rotation. Results show the three-dimensional effects 
of the flow on the local heat transfer rate and the 
components of the friction factor. The values of the 
rotation parameter and the buoyancy force parameter 
range from 0 to 10. For a Prandtl number of 1, our 
results qualitatively and quantitatively agree with 
some particular cases reported in the literature. More- 
over, experimental investigations by an electro- 
chemical method provide a reasonable agreement 
between theoretical results and measurements. 
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APPENDIX d”+K,g”f +K6g'f 

This section gives the appropriate transformations in order 
to study the rotation dominated case (R > 1, B > a) and the 
buoyancy force dominated case (Q > 1, B < Q). 

Table Al summarizes the definitions of the dimensionless 
coordinates E, n and cp with the corresponding dimensionless 
stream functions f(e, q, rp) and g(&, v, cp). For both cases, the 
dimensionless temperature t$(&, rr, rp) is defined by equation 
(13). 

Introducing these transformations in equations (l)-(5) 
gives the following differential system : 

with 

f=g=o; er=l; f’=K,;g’=Ks atn=O (34) 

g/-+0; er-+O; f’+K, asn-rcc 

where the coefficients K,, K,, . . . are given in Table A2. 
Equations (34) are treated as explained in Section 2 by 

introducing successively series (18) and (24). 
=& 

[ 
af ,,af 1 af f’,,-f z+z ( ,, ag g’--f - acp aq >I 

Table Al. Definition of E, q, cp, f (6, q, cp) and g(&, g, cp) for the study of the rotation dominated case and 
the buoyancy force dominated case 

& 

Rotation dominated case ; (c$zY i JiiIZy,e) J(I~j:LLe) 

Buoyancy force dominated case 
x 
r. Grr/4 x e 

*(x,y.eY dkY,eO; 
L EV Gr ‘I4 EV Gr’14 

Table A2. Definition of the coefficients of equations (34) 

Rotation dominated case Buoyancy force dominated case 

K, 

K2 

K3 

& 

KS 

K6 

K7 

KS 

KS 

E dR --- 
R d& 

E dR -- 
R ds 

1 3&dR 
2+zRz 

sin& Gr 
x&Re2, 

2~ dR --- 
R d& 

sin /I, sin cp 
sin & 

cos ji + cotg e sin /.I, sin cp 

B-l/2 

-1 

e dR -_ 
R ds 

I+;: 

t 2 ZR-’ 

sin & 

E 
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CONVECTION MIXTE TRIDIMENSIONNELLE AUTOUR D’UNE SPHERE 
EN ROTATION DANS UN ECOULEMENT FORCE 

R&urn&On utilise des s&ries en puissance de plusieurs variables adimensionnelles pour 6tudier la con- 
vection mixte tridimensionnelle autour d’une sphere en rotation placbe dans un 6coulement for& dont la 
direction diffkre de celle de l’axe de rotation. Les equations de la couche limite sont int&r&es numkriquement 
et les rtsultats prtsentks ont itt& obtenus pour des valeurs mod&r&es du parametre de rotation et du 
paramttre de convection naturelle, ces derniers variant entre 0 et 10. Les rksultats relatifs g quelques cas 
particuliers etudi&s dans la littkrature montrent un bon accord qualitatif. Par ailleurs, la comparaison entre 

les rtsultats thioriques et expkrimentaux s’avere satisfaisante. 

LAMINARE DREIDIMENSIONALE MISCH-KONVEKTION UM EINE ANGESTRt)MTE 
ROTIERENDE KUGEL 

Zusammenfassung-Zum Studium der laminaren Misch-Konvektion urn eine willkiirlich angestriimte, 
isotherme, rotierende Kugel wurde eine Potenzreihenentwicklung fiir verschiedene Variablen aufgestellt, 
wobei ein 3-dimensionales Geschwindigkeitsfeld vorliegt. Die Grenzschichtgleichungen wurden numerisch 
gel&t, die Ergebnisse werden fiir Rotationsparameter und Auftriebsparameter im Bereich von 0 bis 10 
dargestellt. Fiir einige Spezialfille ergibt sich eine qualitative und quantitative Ubereinstimmung mit 
Literaturangaben. Dariiberhinaus ist die Ubereinstimmung zwischen den theoretischen und experimen- 

tellen Ergebnissen befriedigend. 

JIAMMHAPHAII TPEXMEPHM CMEIIIAHHAII KOHBEKqHl OKOJIO BPAuAIGuEtiCII 
C@EPbI 

AmoTauneHcnonb3ymTcn menemwe pnm HecKonbKHx nepehteHHblx mn m4vxenoBaHHn nawrHap 

HOfi CMeUJaHH0i-i KOHBeKUHH OKOJIO H30TCpMHWCK08 lipKLUKlOLUCkCSl C#.pbl, o6TexaeMoti IIOTOXOM 
llpOH3BOJIbHOrO IlO OTHOUICHHIO K OCH BpaUleHHn HalIpaBJleHHn,'lTO o6ycnannwaeT TpeXMepHOe pat- 

npenenemie cwopoc~e. YpaeHetmn norpamiworo cnon peumoTcn wicneHH0. l$encranneHw pe3ynb- 

TaTbI pacreToe nnn 3HaveHki napahfeTpa, xapaKTepH3ymuero BpaueHHe, a Taxne napaM_ 

xapaKTepH3ymuero nonbehfHuecmn ~miana3oHe OT On0 10. &u HexoTopbci vacrHblxcnyvaes npo- 

EWlCHO Ki3’ICCTBCHHOC H KOJIHYCCTBCHHOC CpaBHCHHC C pe3yJIbTaTaMH IlpeLUsUlyulHX pa6oT H IYOXXMHO HX 
XOpOlUCC COOTBCTCTBHC. KpoMe TOrO, IIOJIy'ieHO yAOBJleTBOpHTeJIbHOe COBllUlCHHC TeOpeTHWCXHX H 

3KCIIepHMeHTaJIbHldXpe3yJlbTKTOB. 


